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ABSTRACT: Pregermination is one of many serious degradations to barley when used for malting. A pregerminated barley kernel
can under certain conditions not regerminate and is reduced to animal feed of lower quality. Identifying pregermination at an early
stage is therefore essential in order to segregate the barley kernels into low or high quality. Current standard methods to quantify
pregerminated barley include visual approaches, e.g. to identify the root sprout, or using an embryo staining method, which use a
time-consuming procedure. We present an approach using a near-infrared (NIR) hyperspectral imaging system in a mathematical
modeling framework to identify pregerminated barley at an early stage of approximately 12 h of pregermination. Our model only
assigns pregermination as the cause for a single kernel’s lack of germination and is unable to identify dormancy, kernel damage etc.
The analysis is based on more than 750 Rosalina barley kernels being pregerminated at 8 different durations between 0 and 60 h
based on the BRFmethod. Regerminating the kernels reveals a grouping of the pregerminated kernels into three categories: normal,
delayed and limited germination. Our model employs a supervised classification framework based on a set of extracted features
insensitive to the kernel orientation. An out-of-sample classification error of 32% (CI95%: 29�35%) is obtained for single kernels
when grouped into the three categories, and an error of 3% (CI95%: 0�15%) is achieved on a bulk kernel level. The model provides
class probabilities for each kernel, which can assist in achieving homogeneous germination profiles. This research can further be
developed to establish an automated and faster procedure as an alternative to the standard procedures for pregerminated barley.
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’ INTRODUCTION

Barley is a cereal grain and is the cereal crop ranking number
four in the world both in terms of quantity produced and in area
of cultivation. Barley has many uses. It serves as a major animal
fodder, as base malt for beer and certain distilled beverages, and
as an ingredient in various food products. Only high quality
barley is used for malting and beer production. Grain lots not
fulfilling the quality requirements for malting will be downgraded
to feed barley, which has lower economic value. The quality is
defined by many different parameters, e.g. protein level, grading,
dormancy, pregermination, physical damage in terms of inability
to germinate, or even identification of various fungal infections.
Identifying pregerminated barley in particular has so far been one
of the most difficult quality parameters to handle both for the
malting/brewing industry and for farmers/grain companies.

Pregermination (preharvest sprouting) is a major problem in
seasons with wet harvest conditions. Germination will be in-
itiated in the field and later stop again because of a change in
weather conditions or drying of the grain after harvest and before
storing. The barley may have little or no visible indication of the
pregermination. The major defect of pregerminated barley is its
predisposed inability to germinate again, e.g. for malting. When
the germination reaches a certain level and is afterward stopped,
the kernel can simply not continue the germination or will
germinate with a reduced speed and vigor. A different limitation
is kernels having dormancy as they cannot germinate due to a
chemical lock preventing the germination process to start. This
trait is hence sometimes considered as a positive trait as is hinders
pregermination, but can require additional storing time to over-
come the dormancy prior to malting.

Currently the germination ability of barley kernels can be
evaluated using different approaches. The kernels can be sub-
jected to a simple germination process run over a few days and
with relatively few kernels by applying for instance the BRF
method.1 Specifically to determine pregermination, different
staining methods can be used.2,3 Visual inspection is also widely
used, but it is subjective and lacks the sensitivity to detect
sprouting early.4 Common to these approaches is their high
time consumption. Any method able to identify pregerminated
barley within minutes or even classify the individual kernels into
grades of quality will provide a tool for additional quality
assessment to the industry. Basing such a system on computer
vision provides the fast and nondestructive approach called for.

The research in pregerminated cereals has received attention
in research communities to address the issue of identifying
pregerminated barley kernels using automated visual systems.
The simplest systems use cameras operating in the visual spectral
range providing a high resolution. These image systems com-
monly rely on the spatial information and are often only able to
detect germination by identifying a sprout on the kernels or to
detect kernel deformations.5 Takeuchi et al.6 used such a
computer vision system to detect morphological changes of
barley kernels during germination based on 50 barley kernels.

The visual spectral range lies between 400 and 800 nanome-
ters (nm) and has the limitation of only acting on the surface of
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the kernels with insignificant penetration through the husk. Thus
only identification of pregermination from external features is
possible. As the initial process of germination is occurring inside
at the embryo and endosperm, such an approach potentially leads
to delayed detection. Spatial features used in visual systems can
further be sensitive toward the orientation of the kernel.

A natural extension is to include near-infrared (NIR) wave-
lengths from about 800 to 2500 nm, where the light has the
capability to penetrate the kernels through the husk and extract
internal image information. NIR imaging thus has the potential
to extract chemical changes before they cause an effect on the
outside of the kernel. This approach can further lead to early
detection of germination and can be superior to visual based
systems. Xing et al.5 combined the visual and NIR spectral ranges
(400�1000 nm) to detect sprout damage to Canada Western
Red Spring wheat. They conducted classification on approxi-
mately 200 wheat kernels germinated for 0, 24 and 48 h by
exploiting various spatial changes of the kernels during
germination.

Many applications using the visual and NIR spectral range are
based on fewer than 20 different wavelengths. This spectral
resolution may not be sufficient in applications, where similar
constituents need to be separated. Hyperspectral imaging pro-
vides a high spectral resolution withmore than 100 bands, usually
at the expense of a lower spatial resolution. This allows for
models to utilize the spectral information, possibly in combina-
tion with the image data. Xing et al.7 exploited this combination
to classify α-amylase activity in individual Canadian western
wheat kernels into two classes using hyperspectral NIR images.
The predictions were based on the partial least-squares (PLS)
model using mean spectra from the image segmented embryo
leading to classification rates above 80%.

Munck and Møller8 had developed a model based on NIR
spectroscopy with separately acquired image information to
develop a model able to predict the 24 h germination of barley
kernels. Engelbrecht et al.9 illustrated the potential of using
hyperspectral imaging from 1000 to 2500 nm to classify barley
into normal or germinated kernels based on 150 grains germi-
nated for 6, 9, 12, 18 and 24 h. Their work further included the
destructive tetrazolium test to obtain single kernel reference
values on their viability. Manley et al.10 extended the work to

employ a PLS discriminant analysis model to classify single
kernels into normal or pregerminated and achieve a classification
error of 2.87%.

Analyzing barley using NIR imaging by building a mathema-
tical model to provide the degree of pregermination of single
kernels with true pregermination times as references has not
been attempted previously. We therefore investigate if a math-
ematical model can be developed for the detection of pregermi-
nated barley and for describing the degree of pregermination of a
single kernel using hyperspectral NIR imaging with true preger-
mination time as reference.

In the next section we give an introduction to barley germina-
tion in general, including the pregermination experiment fol-
lowed by a description of the camera system, the preprocessing
pipeline and the theoretical background for our analysis and
model choice. The classification results are presented and
discussed in the Results. A summary with discussions is pre-
sented in the last section. Supplementary details concerning the
image acquisition and the models used are described in a
supplementary technical report.11

’MATERIALS AND METHODS

Barley Germination. A barley kernel (Hordeum vulgare) is a
member of the grass family and has internal structure as illustrated in
Figure 1. Germination of barley is the process of the grain starting to
sprout and becoming a plant. Biologically the process is highly complex
with many stages, and in this context only the general steps will be
considered. It partly involves the conversion of starch into sugars
(maltose and glucose) used for the growth. The germination process
is initiated by the absorption of water into the kernel. Provided the
environmental conditions are suitable, e.g. temperature, this starts a
whole series of biological steps including the release of the enzyme
α-amylase from the aleurone layer into the endosperm, as shown in
Figure 1. The enzyme breaks the starch molecules down into oliosac-
charides, subsequently to the disaccharide maltose, and finally to
glucose, which is transported to the embryo for radicle and epicotyl
growth. This activity can be seen as a large scale physical change inside
the kernel. A conceptual illustration of the progression of the germina-
tion in barley is depicted in Figure 2. It starts with a short period with
little activity, where the α-amylase release is commencing, then rises as
the amylase activity is maximum and finally settles as all the starch is
completely broken down.
Pregermination Experiment. An experiment was set up in

collaboration with Sejet Planteforaedling, Denmark, to produce barley
kernels of the Rosalina variety with eight different durations of preger-
mination from 0 to 60 h. The experiment was conducted using the
following procedure.

Figure 1. The internal biochemical mechanisms of a barley kernel
during germination (courtesy of KAMPFFMEYER Food Innovation
GmbH).

Figure 2. Conceptual illustration of the progression of germinating
barley showing the starch breakdown. The two thresholds indicate the
start and stop of the major chemical changes inside the kernel during
germination.
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1. Two filter papers (upper and lower side) were soaked in water for a
few hours and afterward left to drip off. Prior to use, the filter paper
must still be wet, but not soaking or dripping.

2. 100 single kernels were placed on the lower filter paper.
3. The upper filter paper was placed on top and the enclosed kernels

were rolled up to a small cylinder locked with a rubber band and
placed in a dark and warm environment (e.g., a cardboard box at
room temperature).

4. When the germination times were reached, the individual kernels
were immediately put in a net bag and placed in front of a blow
dryer for a minimum of three hours at 5 to 10 �C.

500 kernels were pregerminated for each of the times [12, 18, 48, 60 h],
and 2000 kernels were pregerminated for each of the times [0, 24, 30, 36
h] in order to conduct a reliable statistical analysis in the time range,
where the kernels would start and stop the major chemical change
(cf. Figure 2). When the moisture level inside the kernels drops below
approximately 35% during the drying process, the germination process is
considered halted. The kernels were further dried to a water content of
approximately 7�27%, which is considered as a stable level for long-
term storage.

After the kernels had pregerminated and had been dried by blow
drying, they were stored in a refrigerator for approximately 6 months.
Over 3000 of the kernels were then subjected to a regermination
experiment (described below) to measure the degrading effect of the
pregermination. Including wastage this left 6200 kernels for an addi-
tional 4 months of storage before the hyperspectral images were taken.
Since not all germination times had the same number of kernels,
only images of a subset of the kernels were acquired, i.e. 840 kernels
(cf. Table 1). This long-term storage slowly dried the kernels further and led
to equal water contents of approximately 10% between the pregermina-
tion times using FOSS NIR XDS instrument analysis (cf. Table 1).

Prior to the hyperspectral image acquisition, the epicotyl and radicle
were rubbed off to fit the kernels on the sample plate. This has no impact
on our analysis as we attempt to capture the pregermination inside the
kernels using penetrating light (NIR) instead of relying on visible
physical changes. During the image acquisition, the germination of
every kernel was verified by visual inspection. This is, however,
associated with some uncertainty as germination may not be visible
for the short germination times. The germination time references
designate the period the kernels were inside the germination environ-
ment, i.e. from when the filter paper is locked with rubber bands to the
start of the dry blowing process. The periods obviously become a bit
longer, as the germination will only halt when the water content falls
below approximately 35%. This additional germination time is consid-
ered equal for all periods and is hence not included in the germination
time references.
Germinative Energy of Barley. The degrading effect of preger-

mination can be measured by evaluating the germinative ability of the
stable pregerminated barley kernels. This is done by subjecting the
pregerminated and dried kernels to the standard BRF method,1 where

the kernels are regerminated. It consists of placing 100 kernels in a
germinative environment (enclosed Petri dish with filter paper and
water) and counting the sprouted kernels every 24 h for three days. The
germinate energy is then the fraction of germinated kernels out of the
100 kernels. In our case the germinated kernels are counted for five days,
using the same conditions as the BRF method.
Image Acquisition and Preprocessing. Camera System and

Equipment. A hyperspectral line-scan NIR camera system from Head-
wall Photonics Inc. (Fitchburg, MA, USA) sensitive in the range 900 to
1700 nmwas used to acquire the image of the barley kernels. A dedicated
NIR light source illuminates the sample uniformly along the scan line,
and an advanced optical system disperses the NIR light onto the InGaAs
sensor inside the camera for acquisition. A sledge from MICOS GmbH
(Germany) moves the sample past the view slot of the camera allowing it
to acquire a hyperspectral image, line by line. The camera has a
resolution of 320 spatial pixels and 166 spectral pixels with equally
spaced wavelength intervals of 4.8 nm. Further details of the perfor-
mance of the camera system and the standard operating procedure can
be found in the technical report, cf. ref 12.

Acquisition Procedure. The procedure for acquiring images can be
split into an initialization part to set up the camera system and a
subsequent acquisition part. The initialization procedure consists of a
series of steps with the purpose to acquire maximum quality images of
the barley kernels. Initially the camera system and light source are tuned
to maximize dynamic range while limiting specular reflections and
saturated pixels. Images of the wavelength standard WSR1920a13 from
Avian Technologies LLC (Sunapee, NH, USA) and a set of vertical lines
were acquired for wavelength scale alignment and spatial calibration
respectively. The entire process of acquiring images of all the barley
kernels once was conducted in one run in a single day.

In order to obtain usable images a maximum of 50 barley kernels were
fixated at a time on a sample plate, as shown in Figure 3. The sample plate
(courtesy of Skandinavisk Bryggeri Laboratorium, Denmark) is painted
with a NIR dark black color (Mankiewicz Nextel-Velvet Coating 811-21
9218 Schwartz) to avoid reflections during acquisitions and for easier
background removal during data processing. The acquired images
include a white reference [NCS-0300 (Natural Color System, Sweden,
Web: http://ncscolour.com) reflecting paper] as the top part in every
image to ensure the capture of any potential drift of the light source. An
equivalent dark current image is taken at the end of the acquisitions for

Table 1. Number of Kernels Used in theDifferent Steps in the
Analysis and the Concentration of Water in the Kernels with
an Accuracy of 0.25%age Pointsa

0 hb 12 hb 18 hb 24 hb 30 hb 36 hb 48 hb 60 hb total

pregerminated 2000 500 500 2000 2000 2000 500 500 10000

regerminated 300 300 300 1000 300 300 300 300 3100

image acquired 150 97 50 150 150 150 47 46 840

preprocessed 135 87 45 135 135 135 42 41 755

water 10.4% 10.2% 9.9% 10.2% 10.2% 10.1% 10.0% 9.8%
a Since not all germination times had the same number of kernels, only
images of a subset of the kernels were acquired. bGermination time.

Figure 3. Barley kernel sample plate painted with a special NIR black
color. A small strip of the NCS-0300 paper is placed on the top as the
white reference acquired for each image. Afterward the kernels are
cropped, as marked by the white rectangle.
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each germination time by obstructing the incoming light to the camera
with a lens cap.
Preprocessing Pipeline. The preprocessing pipeline, as illustrated in

Figure 4, is made from a series of steps to prepare the data structure for
subsequent analysis. Initially the wavelength scale is recalculated using
the wavelength standard WSR1920a13 to achieve optimal calibration.
The camera system suffers from a small misalignment in the optical
system, which causes a minor spatial distortion over both the spectral
and spatial range. This is corrected using an image of a set of vertical lines
and an image of the wavelength standardWSR1920a for calibration. The
wavelength range is reduced to 132 bands between 1002 and 1626 nm
due to the poor sensitivity of the InGaAs sensor at the spectral
extremities. The camera further suffers from a single vertical line of
poor sensitivity across the first column of barley kernels, and the affected
pixels will represent outliers. These kernels are eliminated from the data
set in all images, leaving only 45 kernels per image and a reduced data set
of 755 kernels, cf. Table 1. Each acquired image is then represented in a
250 pixels � 280 pixels � 132 bands 3-way tensor after cropping the
kernels out (white rectangle in Figure 3). Every image is corrected with
the associatedwhite reference and dark current image byR= (Iraw� Idark)/
(Iwhite� Idark). The spectral mixing is assumed dominated by subsurface
penetration and thus nonlinear multiplicative mixing. To enforce linear
mixing the spectra are transformed from reflectance data to absorbance
data by A =�log10(R). Pixels suffering from specular reflections do not
hold any spectral information relevant for the analysis. They are
identified with a reflection larger than one R > 1 or a negative absorbance
A < 0 and are removed. The background can easily be removed due to
the high contrast between the kernels and the NIR absorbing black color
by a simple approach. This contrast will exhibit the highest variance and
can be captured by a principal component analysis (PCA) decomposi-
tion. This is conducted by unfolding each tensor image data into a
matrix, where each column represents a pixel, and subjecting the mean
centered matrix to PCA. The foreground and background contrast is
represented in the first score image and is used to extract a mask from a
simple scalar threshold. The acquired images are further corrected for
scatter effects as a preprocessing step on the spectral information. Many

different scatter correction techniques exist, and wewill apply the standard
normal variate (SNV) correction.14 Each of the acquired spectra consists
of 132 bands, and the relevant information for our analysis is expected to
be represented by fewer components. The spectral information is there-
fore compressed to D dimensions, which is set manually, to suppress the
noise allowing for a reduction in the computational load and curse of
dimensionality, but at the risk of removing information important for the
final analysis. In order to represent all germination times a concatenated
data subset is formed from one SNV corrected image from each germina-
tion time. This tensor subset is unfolded to a matrix, where each column
holds a spectrum. The mean centered data is subjected to PCA, and the
entire data set is projected onto the first D loadings.
Classification Models. The classification of the individual kernels

is based on both spectral and spatial features from the image data, and
these features are extracted prior to the classifier (cf. Figure 4).

Feature Extraction. Prior to the actual classification, the image data is
processed to find features, which exhibit the chemical changes inside the
kernels related to the germination process. The feature extraction is
applied to a subset of the compressed images represented by one image
from each germination time to capture these chemical changes. To this
end several feature extraction methods exist, and we will focus on two
simple approaches: PCA15 and minimum noise fraction (MNF).16 PCA
finds a linear combination of the spectra, which maximizes the variance
in the data and hence does not consider any spatial information. These
features have already been extracted in the data compression step and are
reused. MNF also finds a linear combination of the spectra by maximiz-
ing the signal-to-noise ratio. The signal covariance matrix is based on the
spectral information, and the noise covariance matrix is estimated from a
neighbor pixel dependency. It thus exploits both spectral and spatial
information to estimate components to explain more variance in fewer
components than PCA does. The extracted features from any of the
decompositions are finally represented as a set of score images.

Single Kernel Segmentation and Feature Extraction. The extracted
features reveal the chemical changes inside the kernels during germina-
tion and need to be quantified prior to the classification. Initially the
kernels are segmented out easily since the kernels have the same position

Figure 4. Flowchart of the preprocessing, feature extraction, and classification steps starting from the boldface Image Acquisition box. The pinned boxes
show the size of the image data at the different steps.
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on the sampling plate for all images. In order to quantify the germination
progression, a second level of features are extracted from each of the
kernels. This feature is based on the spatial information in the extracted
score images, as shown in Figure 5, and is constructed to maximize the
contrast between the starch break down progression and the back-
ground. The feature can be described as the sum of the pixel intensities
for each score image for each barley kernel divided by the total number
of pixels in the kernel for both positive and negative intensities
separately. The advantage of this feature is the insensitivity to the kernel
orientation. If we denote the extracted score imagesX score ∈ RX�Y�D,
where X and Y are the image dimensions and D is the number of
loadings, then the single kernel feature f can be expressed as

f k, n ¼ 1
L
½∑
xþ
xscoreijk ∑

x�
xscoreijk � ð1Þ

where k represents the kth band, n represents the nth kernel, i,j denotes
the pixel position and L is the total number of pixels in the kernel. fk,n is

calculated for each score image k for each kernel n as a 2-dimensional
vector, which leads to a complete feature vector Fn = [ f1,n, f2,n, ..., fD,n ] of
length 2D for each kernel n.

Classification. We have evaluated different classification models
based on different approaches, which includes ordinal classifiers and
nonlinear neural networks (cf. ref 11 for supplementary material). The
model with the best performance is themaximum likelihoodmultinomial
regression classifier implemented in the L1General toolbox (available for
download at http://pages.cs.wisc.edu/gfung/GeneralL1),17,18 which pro-
vides a probability for each barley kernel n for each class c (cf. Figure 4). The
classifier can be expressed by the softmax function

pðcjFnÞ ¼ expðFnwcÞ

∑
C

ĉ¼ 1

expðFnwĉÞ
ð2Þ

where the model weights are denoted by wc for each class c, and C denotes
the total number of classes. The entire data set is applied in a leave-one-out
cross validation framework, where the training and test sets are extracted
from the entire data set as illustrated in Figure 6 to ensure an equal number
samples from each germination time. A different training and test set
combination can be extracted repeatedly to achieve an average class
probability for each validation sample. In commercial applications bulk
results are often desired. Single kernel class probabilities are hence afterward
combined as the average class probabilities of adjoining kernels to achieve a
more robust probability and provide bulk classification results. A confusion
matrix for all C classes is calculated using the class probabilities to evaluate
the classification performance. The C classes can be aggregated to a smaller
confusionmatrix with fewer classes, Ĉ, or themodel can be retrained with Ĉ
classes to obtain a more dedicated model with potentially lower classifica-
tion error. In our case the former approach is used to model the Ĉ classes.

’RESULTS

This section describes the model and classification results.
Supplementary details can be found in the associated technical
report.11

Germinative Energy of Barley. The degrading effect of
pregermination is evaluated by subjecting stable pregerminated
barley kernels to the standard BRF method,1 as described
previously. The BRF method was repeated several times for each
pregermination duration for improved accuracy (cf. Table 1).
The resulting progression of the regermination is shown in
Figure 7. The regermination results suggest the pregerminated
barley can be divided into three groups:
1. Normal regermination. A short pregermination has negli-

gible effect as all kernels regerminate as normal kernels. The
period includes 0 to 18 h of pregermination.

Figure 5. The single kernel feature consists of two scalar values for each
score image calculated as the sum of the positive and negative intensities
respectively divided by the total number of pixels.

Figure 6. Leave-one-out cross validation framework with subsampling
to extract training/test sets with equal number of samples from each
germination time.

Figure 7. Progression of regerminated barley for each day showing the
accumulated percentage of germinated kernels for each pregermination
duration (dots) with 95% confidence intervals (lines). The progression
reveals three clusters of pregermination: normal, delayed and limited.



11390 dx.doi.org/10.1021/jf202122y |J. Agric. Food Chem. 2011, 59, 11385–11394

Journal of Agricultural and Food Chemistry ARTICLE

2. Delayed regermination. The kernel will regerminate within
five days, but at a slower rate. This period is between 24 to
36 h of pregermination.

3. Limited regermination. The kernels are exhausted from
pregermination and not all will regerminate within the five
days. This period is greater than 36 h of pregermination.

The division further indicates how the germination starts a
major chemical change between 18 and 24 h. Applying the BRF
method to pregerminated kernels with visual radicle and epicotyl
may fail as the method relies on visual inspection. Long preger-
mination durations will lead to a visible radicle and epicotyl, and
hence identifying if the individual kernel has in fact germinated
again becomes difficult. However, this does not change the three
pregermination categories identified.
Preprocessing. The acquired image data is preprocessed as

described in the Preprocessing Pipeline section.
Background Segmentation and Scatter Correction. The

barley kernels are segmented out by using the simple procedure
described earlier. Each hyperspectral image is unfolded into a 132
� N matrix, where N = 250 � 280 pixels ≈ 70000 (excluding
specular reflecting pixels). The background mask is extracted
from the first loading from the PCA decomposition. After the
background removal each kernel is on average represented by
approximately 400 pixels. Each spectrum is afterward scatter
corrected by applying the SNV transform.14 A detailed compar-
ison with other scatter correction methods is described in the
associated technical report,11 which shows how the SNVmethod
is superior to the others in this application.
Data Compression. The data is compressed as described

earlier. The mean centered data subset is represented in a matrix
of size 132� Nsamples, where Nsamples = 8 germination durations
�45 kernels per image � ∼400 pixels per kernel ≈ 140000
spectra, and subjected to PCA. The number of PCs required to
capture the most important information is evaluated from a set of
estimated projection loadings. To ensure that the relevant
information is retained in the data, while achieving a suitable
compression, the entire data is projected onto the first D = 8
PC’s. These components explain 99% of the variance.
Data Visualization. For evaluation of NIR spectra, hyper-

spectral images of the main constituents during germination,
starch and maltose in their pure powder form, were acquired
using our camera system, and their mean spectra are illustrated in
Figure 8. The starch and maltose spectra reveal similar variation
in the lower part of the spectrum, but exhibit large differences at
the longer wavelengths. We therefore expect to observe spectral

activity during germination in the area between 1400 and
1550 nm. The hyperspectral image data of the barley kernels
can be visualized from the score images and the associated
spectral loadings from the PCA decomposition conducted in
the data compression step. The resulting score images can be
used to analyze the internal structure of the barley kernels in
general and during germination. Figure 9 illustrates the first five
score images and spectral loadings of the second and third PC.
The second spectral loading is comparable to the spectra of
starch and maltose. Activity at the embryo is clearly captured by
the third and fifth score images. The third spectral loading reveals
a clear peak around 1430 nm indicating spectral activity in the
same area as the spectral difference between starch and maltose.
The husk of the barley kernel acts as an attenuating filter and is
observed as an intensity difference. However, this is not visible
due to the normalizing effect of the SNV scatter correction. The
fifth score images for the germination times [0, 12, 24, 36, 48 h]
are shown in Figure 10. This PC also captures the germination
progression identified as the small area at the embryo increasing
over time. The corresponding spectrum includes additional
spectral features to increase the contrast of the germination
progression compared to PC loading 3. As the third and fifth
components designate the starch breakdown into maltose, their
associated spectral loadings represent the largest contrast be-
tween starch and maltose and not necessarily a pure spectral
signature.
A visual subjective evaluation based on several similar

images indicates a threshold of approximately 24 h, where
the kernels would start the major chemical change. Similarly
the same images reveal a very small difference between 48 and
60 h indicating the steady state and hence the second thresh-
old between 36 and 48 h. These properties of germination
coincide with the results from the germinative energy analysis
using the BRF method.
Feature Extraction. The PCA features have already been

calculated in the data compression step, and the 8 score images
are hence reused. For the MNF decompositions the compressed
data subset is represented in a matrix of size 8 � Nsamples, where
Nsamples = 8 germination durations � 45 kernels per image �
∼400 pixels per kernel ≈ 140,000 spectra. Features from the
entire data set are then extracted using the estimated loading
vectors for each method. The MNF method extracts similar
components compared to PCA as shown in Figure 11, where the
germination progression is clearly captured in component 1. The
germination progression is found in a single component as
opposed to PCA leading to a stronger contrast between the
germinating embryo and the rest of the kernel. The associated
spectrum designates the correlations between the MNF feature
loading 1 and the original variables. It is comparable to the fifth
PC loading in Figure 10 as it includes similar spectral features to
increase the contrast of the germination progression. In general
the MNF is considered to perform best in terms of extracting
spatial features for the classification. The extracted features used
in the following are therefore 8 score images from the MNF
decomposition.
Single Kernel Segmentation and Feature Extraction. The

kernels are segmented out and the single kernel feature to
quantify the germination progression Fn is calculated for each
kernel n leading to a 2 � 8 = 16-dimensional feature vector per
barley kernel. For all barley kernels, the entire feature extracted
data set F becomes a 16 � 755 matrix.

Figure 8. NIR spectra of pure constituents of starch and maltose in
powder form using our hyperspectral NIR camera system. The two
spectra exhibit large differences in the spectral range from 1400 to
1550 nm.
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Classifiers. The classification on a single kernel level will be
conducted into the eight classes designating the germination
times [0, 12, 18, 24, 30, 36, 48, 60 h] using the MNF feature set.
The leave-one-out approach is applied by extracting a training

and test set to ensure equal number of samples from each

germination time, i.e. a balanced data set (cf. Figure 6). The
germination time with fewest data is 60 h and has only 41 samples
(cf. Table 1). Excluding the validation sample the balanced
training/test set is hence set to include 40 samples from each
germination time, i.e. a total of 320 samples.

Figure 9. PC score images with the corresponding spectral loadings for PC2 and PC3. The second PC loading is comparable to the scaled pure spectra
for starch andmaltose acquired using the same camera system for comparison (dashed). Both the third and fifth score images have captured activity at the
embryo indicating the germination process. The third spectral loading exhibits a distinct peak around 1430 nm and indicates activity in the same area as
the spectral signatures of starch and maltose.

Figure 10. PCA score image 5 for the germination durations [0, 12, 24, 36, 48 h] (left to right) and the associated spectral loading. The score images
reveal a clear progression in the germination process, and the spectral loading includes additional spectral features to increase the contrast of the
germination progression compared to PC loading 3.
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A random training/test set is extracted 3000 times for each
validation sample, a corresponding 8-class classifier model is
inferred for each training/test set, and the average class prob-
ability for each kernel is used. The classification distribution is
calculated in an 8 � 8 confusion matrix to evaluate the
classification performance and a corresponding 3 � 3 confusion
matrix for the three classes. The validation classification error for
all single kernels in all eight classes become 59% (CI95%:
55�62%) and 32% (CI95%: 29�35%) for the three aggregated
classes. This can be compared to the random guess error rate of
7/8 = 87.5% and 2/3 = 66.7% respectively.
The class probabilities for adjoining kernels in each class are

averaged to estimate bulk classification results for a small range of
combinations as shown in Figure 12. The classification error
clearly decreases and is a minimum by averaging 20 kernels with
an error of 18% (CI95%: 7�35%) and 3% (CI95%: 0�15%) for
eight and three classes respectively. Since we only have 755
kernels, averaging them leads to even fewer samples and less

accurate results. This is evident for averaging 41 kernels, which
only have 17 samples and a higher classification error.
The classification distributions for eight and three classes for

20 averaged kernels are illustrated in Figure 13. The misclassi-
fications for the eight classes are concentrated around 0 to 12 h,
and are due to the pregermination process having not yet
produced macroscopical changes. From this point of view the

Figure 11. TheMNF score image 1 on top represents the germination durations [0, 12, 24, 36, 48 h] (left to right) and reveals a stronger intensity of the
germinating embryo than PCA does. The spectrum represents the correlations between the MNF feature vector 1 and the original variables. It exhibits
spectral activity in the area, where the spectra of starch and maltose differ, and is comparable with PC loading 5 shown in Figure 9.

Figure 12. Classification errors for different numbers of averaged
kernels. The error clearly decreases when averaging more kernels.
Averaging kernels leaves fewer samples to analyze and hence higher
sensitivity to our results. When averaging 41 kernels, the error is based
on only 17 samples.

Figure 13. Error distribution for averaging 20 kernels for both eight and
three classes (top and bottom respectively). The few misclassifications
for the eight classes are concentrated around 0�12 h, but stay within the
three aggregated classes. The resulting classification error for the three
aggregated classes of 3% is due to one misclassification.
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pregermination process is with the same stage between 0 and 18
h of pregermination, and causes these misclassifications. The
three class validation error of 3% corresponds to one misclassi-
fication out of 34 samples and is thus sensitive to the number of
samples.

’DISCUSSION

In summary our modeling framework based on hyperspectral
NIR imaging technology has proven feasible for describing the
degree of pregermination of single barley kernels. The approach
of using NIR imaging technology has also proven superior
to visually based systems in terms of visualizing the chemical
changes inside the kernels during the germination process of
barley kernels. The practical germination experiment with eight
pregermination levels identified three groups to categorize
pregerminated barley: normal, delayed and limited. We pre-
sented a simple classifier model to classify the germination
durations for single barley kernels. By averaging single kernels
to obtain bulk level results and aggregating to three classes we
achieved a classification error of 3% (CI95%: 0�15%). Our results
are only based on 755 kernels and can be revalidated using a
larger data set.

Part of the framework development included evaluation of
different approaches, i.e. compression rate and feature extraction
method. These choices were made manually and should instead
be taken by optimizing the complete classifier framework for a
more comprehensive approach. In real-world applications the
distribution of single kernels into the three classes is of interest.
This gives a more nuanced profile of the pregermination of the
kernels than their bulk average. In such applications the classi-
fication is performed on a single kernel level and the error of 32%
is thus applicable. Our results suffers from having relatively few
kernels in the analysis and can be made more accurate and
reliable in a future experiment with a larger sample. Our model
only assigns pregermination as the cause for a single kernel’s lack
of germination and is unable to identify dormancy, kernel
damage etc. The focus of future work can therefore be to attemp
to identify these other properties based on dedicated barley
kernel experiments. This can be done in conjuction with our
model to build an even more comprehensive framework. The
measured water levels of the stored kernels were equal and can be
considered a confounder. The impact in the prediction perfor-
mance should be investigated empirically with other water
concentrations. A more robust and difficult approach is to have
different water levels for all single kernels to ensure that the
model becomes independent of the water levels.

Using hyperspectral images provides the opportunity to
achieve a spectrum with an abundance of bands for each pixel.
This approach is suitable for research as in this case, but may not
be optimal for commercial interests. A natural extension to this
work would include the identification of the most important
wavelengths to simplify the image technology. If similar results
can be achieved with only a few wavelengths, then cost-effective
multispectral image equipment can be used instead. Our frame-
work is applicable to other germinating grain types and can
possibly be used for other applications such as kernel fungal
infections or perhaps detection of dormancy. It is currently based
on a single variety of barley and can also be validated against
other varieties for possible reinference of model parameters.

Compared to the standard BRF procedure to analyze barley
kernels for pregermination taking several days, our proposed

automated method is faster and does not include any subjective
evaluation. A portion of kernels can be classified within a few
minutes. With the system used in this research, image acquistion
takes approximately 2 min per sample plate of 50 kernels and
the export and classification of data is conducted within tens
of seconds. In total the kernels can be analyzed within a few
minutes.

The entire analysis is implemented and conducted in MA-
TLAB with an associated toolbox available for download.19
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